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Abstract This article explores the use of single trial EEG 
signals to predict the voluntary movements of single hand and 
two hands. During single-hand movements, three kinds of task, 
grasping, releasing, and holding were considered. The tasks 
considered during two-hand movements are left and right 
grasping, left and right releasing, and holding. The subject 
performs the tasks spontaneously without waiting for and 
responding to any external cues. In addition, a neural adaptive 
noise canceller is developed that accomplishes eye blinks 
suppression. The neural adaptive filter is here implemented by 
means of a three-layer feed-forward neural network. The feature 
vectors are formed from the three channels (Fz, C3, and F3). We 
employ the multilayer perceptron (MLP) with back-propagation 
learning algorithm and Radial Basis Function (RBF) network 
with stochastic gradient learning rule for discriminating 
different patterns of the EEG signals. In the classical approach 
to RBF and MLP network implementation, the number of 
hidden units is predetermined. It, usually, results in too many 
hidden units. To overcome this drawback, we develop an 
enhanced resource-allocating network (RAN) for discriminating 
the EEG patterns. These networks start with no hidden units 
and grow by allocating new hidden units based on the novelty in 
the EEG signals, which arrive sequentially. The results of this 
analysis show that the neural networks would be able to detect 
the movements of a single hand and two hands with an average 
classification accuracy of 98.82% and 96.40%, respectively. 
Moreover, the RAN provides a reduction in the training epochs 
as compared to the MLP and RBF networks. This work 
represents a promising approach to control prosthesis device. 

 Index Terms EEG, brain, computer, neural network, human-
computer interface, adaptive filter, hand movement. 
 

I. INTRODUCTION 
 It has been known that the intrinsic processes of planning 
and preparation of a voluntary movement are reflected by the 
cortical potentials [1], [6]. These suggest the possibility of 
using the event-related EEG signals to observe the brain 
processes during attentional demand. In [2], two snapshots of 
Readiness Potentials recorded from twelve channel surface 
electrodes were used for recognition of four-direction joystick 
movements by using neural network. After 1000 training 
epochs, 23 out of 24 new patterns were correctly recognized. 

In [3], the neural network based classification of event-
related EEG has been investigated while the task was to push 
a button with either the left or right index finger. The 
recorded EEG during 1-s time interval before the physical 
movement is broken down into overlapped windows. The 
maximum power value within the alpha band (5-16 Hz) 

within each window was used as the feature. The features 
were formed from the multi-channel EEG. The 80% of the 
experimental trials was used for training and 20% for testing 
the classifiers. It was reported that the accuracies as high as 
85-90% are achieved for two-class classification. In [4], the 
EEG data from three bipolar channels (C3-C3�, Cz-Cz�, C4-
C4�, C3, Cz, and C4) were classified to detect three kinds of 
movements, left and right index finger, and right foot 
movement. An accuracy of about 60% was reported. In [5], 
56-channel EEG signals have been used to detect three kinds 
of movements, left and right index finger, and right foot 
movement. By Laplace filtering the 56-channel EEG, 30-
channel EEG data were obtained. For each of the 30 
channels, a feedforward neural network was trained with 
back-propagation learning algorithm. It was reported that a 
classification accuracy of 92-99% is obtained.  

In this work, we used 3-channel EEG data from a single 
trial to detect the voluntary hand movements using artificial 
neural network (ANN). A neural network-based adaptive 
noise canceling was developed for suppression of the eye 
blink artifact. 

 
II. EXPERIMENTS 

 The EEG data of a normal subject were recorded at a 
sampling rate of 256 from positions Fz, C3, and F3 by scalp 
electrodes placed according to the International 10-20 system. 
Another channel was added to record eye blinks by placing an 
electrode on the forehead above the left brow line.  These 
four channels were referenced to the right earlobe. 

During the experiments reported here, two different 
experimental settings were considered. The first setting 
consisted of single-hand movements included grasping, 
releasing, and holding. The second experimental setting 
consisted of two-hand movements. The tasks to be performed 
during two-hand movement included left and right grasping, 
left and right releasing, and holding. During each trial 
experiment, one task was voluntarily performed without any 
external constraint. During holding, the subject did not 
perform a specific task. 

Data were recorded for 5 s during each trial experiment 
and each trial was repeated 100 times for each task during 
single-hand movements and 60 times during two-hand 
movements. During each experiment day, 300 trials were 
conducted. There were five separate experiment days on the 
same subject. 
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III. NEURAL ADAPTIVE FILTERS 

 Neural adaptive filters (NAF�s), which are based upon the 
artificial neural network, are used for adaptive processing of a 
signal [7]. The structure of the neural adaptive filtering 
applications is much analogous to that of the classical 
adaptive filtering. Fig. 1 shows a typical application of NAF 
for noise canceling with the reference signal. In this paper, we 
apply neural adaptive noise canceling with the reference 
signal for suppression of the eye blink artifact. The primary 
signal is the desired signal of interest buried in noise, while 
the reference input contains noise, which is correlated with 
the noise component of the primary signal. 
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Fig. 1. Neural adaptive filter for noise canceling with reference signal. 

 
IV. EYE BLINK ARTIFACT SUPPRESSION USING NEURAL 

ADAPTIVE FILTER 

 The EEG signals are contaminated by noise from sources 
such as eye blinks.  The traditional method of the eye blink 
suppression is the removal of the segment of EEG data in 
which eye blinks occur. Eye blinks are usually detected by 
means of data recorded from electrodes placed above and 
below the subject�s left eye. An eye blink is said to have 
occurred if the signal amplitude exceeds a given threshold. 
All EEG segments in which eye blinks occur are then 
excluded. This scheme is rigid and does not lend itself to 
adaptation. Moreover, a great number of data is lost.  
 To overcome these problems, we employed neural 
adaptive noise canceller to suppress the eye blink artifact. 
The NAF was here implemented by means of a multi-layer 
perceptron (MLP) network with two hidden layers and one 
Linear output. For the two hidden layers, the activation 
function is the hyperbolic tangent. The primary signal is the 
measured EEG data while the reference signal is the data 
recorded from electrode placed on the forehead above the left 
brow line. The output of the neural network is an estimate of 
the noise in the primary signal and the output of the NAF is 
an estimate of the artifact-free EEG. 
 For each of the three EEG channels, a NAF was trained 
and validated.  For this purpose, the EEG data along with eye 
blink data were recorded continuously for 100 s, while the 
subject did not perform a specific task during recording. The 
NAF�s were trained with the first 18-s segment of data and 
were evaluated with the subsequent 72-s segment of the data. 
Fig. 2 shows the eye blink artifact suppression obtained using 
neural adaptive filter. 
 

V. NEURAL NETWORK CLASSIFIERS 

A. Feature Extraction 

To classify the EEG patterns, feature vectors must be 
created. The features were formed from the three channels 
(Fz, C3, and F3) during each trial of experiment. The mean 
absolute value (MAV), variance, the relative power of the 
beta band to the alpha band, the relative power of the beta 
band to the total power, the relative power of the alpha band 
to the total power, and the singular values [8] of the artifact-
free EEG constitute the features. Various feature vectors were 
formed and were fed into the classifiers.  

B. Neural Networks 
In this work, we employed the multilayer perceptron 

(MLP) with back-propagation learning algorithm [9], Radial 
Basis Function (RBF) network with stochastic gradient 
learning rule [8], and an enhanced resource-allocating neural 
network for discriminating different patterns of the EEG 
signals.  
 The MLP network considered in this study consists of two 
hidden layers each containing hyperbolic tangent units and a 
linear output layer. The output layer has three nodes during 
single-hand movement and five nodes during two-hand 
movement. The block diagram of a version of RBF network 
considered in this work is shown in Fig. 3, and the LMS 
learning algorithm [9] was used for adapting the  network 
parameters. 

The architecture of RAM is similar to the RBF networks. 
The hidden layer is composed of a number of kernel nodes 
with kernel activation functions [10]. The output of each 
output neuron is simply a weighted linear summation of the 
kernel functions: 
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where x Rn∈   is the input vector, M is the number of kernel 
nodes in the hidden layer, wij (1 ≤ ≤i M ) is the vector of 

weights from the i-th kernel node to the output node j, •  is 

Euclidean distance, and k is a radial symmetric kernel 
function. A Gaussian function is chosen as the kernel 
function. The vectors Ci represent the locations of the kernel 
functions in Rn . Finally, σσσσi  is the smoothing factor or kernel 
bandwidth of the  i-th kernel node. The learning process of 
RAN involves of allocation of new hidden units as well as 
adaptation of network parameters. The network begins with 
no hidden units and grows by allocating new hidden units if 
the following two conditions are satisfied: 
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are thresholds to be selected appropriately. If the growth 
criterion is not satisfied, a hidden unit is not added but the 
network parameters are adapted by using the LMS algorithm. 

The networks were trained with data obtained during 70% 
of the experimental trials and were validated with data 
obtained during 30% of the subsequent trials. During the 
training, the feature vector was randomly selected from the 
training sets and then fed into the network.  
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To assess the robustness of the proposed scheme in 
detecting the voluntary hand movement, three different data 

sets were created for training and evaluating the network 
during each experiment day. 

 

 
Time(s) 

Fig. 2. Eye blink artifact suppression using neural adaptive filter: (a) recorded EEG from position F3; (b) artifact-free EEG; (c) eye blink data recorded from 
electrode placed on the forehead above the left brow line. 
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Fig. 3. Architecture of the radial basis function network used for single-hand 
movement detection. 

 
VI. RESULTS 

 
 For each of the three data sets obtained during each 
experiment day, a neural network was trained and evaluated. 
Then the results were averaged.  

A. Single-Hand Movement 
A MLP network with two hidden layers each containing 5 

hyperbolic tangent units and three linear output nodes was 
considered. Table I summarizes the average classification 
accuracy obtained using MLP networks after 5000 training 
epochs, for different feature vectors, on different days. It is 
observed that an average classification accuracy of 98.74% is 
achieved over all days using the feature vector (Pα/PT, Pβ/PT, Pβ/ 

Pα). Almost the same results are obtained using the feature 
vectors (MAV, Var, Pα/PT, Pβ/PT, Pβ/ Pα) and (MAV, Var, Pα/PT, Pβ/PT, 

Pβ/ Pα, SV). 
Table II shows the results of single-trial EEG 

classification obtained using RBF network with 15 kernel 
nodes and three output nodes after 2000 training epochs on 
different days on the same subject. An average classification 
accuracy of 97.71% on novel data is obtained using the 
feature vectored (MAV, Var, Pα/PT, Pβ/PT, Pβ/ Pα, SV).  

Table III shows the performance of the enhanced RAN in 
detecting the single-hand movements after 50 training epochs 
over the five experiment days. It is observed that an average 
classification accuracy of 98.82% is obtained. Note that the 
performance of the RAN is almost the same over the different 
experiment days.  

B. Two-Hand Movement 
Table IV shows the two-hand movement detection results 

obtained by the back propagation neural network with two hidden 
layers each containing 10 neurons and five linear output nodes. An 
average correct classification rate of 96.4% is obtained over the five 
days when the vector (Pα/PT, Pβ/PT, Pβ/ Pα) is used as the feature 
vector. Almost the same results can be obtained using the feature 
vectors (MAV, Var, Pα/PT, Pβ/PT, Pβ/ Pα) and (MAV, Var, Pα/PT, 
Pβ/PT, Pβ/ Pα, SV). The results of this analysis show that the feature 
vector (Pα/PT, Pβ/PT, Pβ/ Pα) provides the best classification 
accuracies during single-hand movement as well as during two-hand 
movement when the MLP network is used as the classifier. 

The results of two-hand movement detection using the RBF 
network with 25 hidden neurons after 5000 training epochs are 
summarized in Table V. Once again, the feature vector (MAV, Var, 
Pα/PT, Pβ/PT, Pβ/ Pα, SV) provides the best two-hand classification 
accuracy when the RBF neural network is used as the classifier. The 
mean correct classification rate is 95.67%. 
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TABLE I 
AVERAGE DETECTION ACCURACIES OF THE SINGLE-HAND MOVEMENTS ON DIFFERENT DAYS, USING A MLP NETWORK WITH TWO HIDDEN LAYERS EACH 

CONTAINING 5 HYPERBOLIC TANGENT UNITS AND THREE LINEAR OUTPUT NODES AFTER 5000 TRAINING EPOCHS. 

Feature Vectors No. of Input Nodes Day 1 Day 2 Day 3 Day 4 Day 5 Mean Variance 

Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα  3×3 97.78 98.52 99.26 99.63 98.52 98.74 0.72 

MAV, Var 2×3 98.33 82.96 86.66 77.78 84.82 86.11 7.59 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα 5×3 97.22 98.89 99.26 93.70 98.89 97.59 2.32 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα, SV 6×3 96.67 98.15 100.0 97.04 98.15 98.00 1.30 

MAV, Var, Pαααα/PT, SV 4×3 98.33 95.18 96.30 74.44 95.18 91.89 9.84 

MAV, Var, Pββββ/PT, SV 4×3 96.67 98.89 96.30 73.71 98.52 92.82 10.75 

SV 1×3 93.89 83.33 80.00 44.07 65.19 73.30 19.30 

 
TABLE II 

AVERAGE DETECTION ACCURACIES OF THE SINGLE-HAND MOVEMENTS ON DIFFERENT DAYS, USING AN RBF NETWORK WITH 15 HIDDEN NEURONS AND 

THREE OUTPUT NODES AFTER 2000 TRAINING EPOCHS 

Feature Vectors No. of Input Nodes Day 1 Day 2 Day 3 Day 4 Day 5 Mean Variance 

Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα  3×3 80.00 93.33 100.0 98.89 99.26 94.30 8.42 

MAV, Var 2×3 97.78 80.00 69.26 53.70 75.93 75.33 16.05 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα 5×3 97.22 97.78 99.63 92.96 99.26 97.37 2.66 

MAV, Var, Pαααα/PT, Pββββ/PT,Pββββ/ Pαααα, SV 6×3 96.67 97.41 98.15 96.67 99.63 97.71 1.24 

MAV, Var, Pαααα/PT, SV 4×3 97.22 93.70 93.33 71.85 80.74 87.37 10.69 

MAV, Var, Pββββ/PT, SV 4×3 96.66 94.82 92.96 71.85 78.15 86.89 11.16 

SV 1×3 92.78 84.44 77.41 45.93 59.63 72.04 19.03 

 
TABLE III 

AVERAGE CLASSIFICATION ACCURACIES OF THE EEG PATTERNS DURING SINGLE HAND MOVEMENTS ON DIFFERENT DAYS, USING RESOURCE ALLOCATING 

NETWORK AFTER 50 TRAINING EPOCHS 

Feature Vectors No. of Input Nodes Day 1 Day 2 Day 3 Day 4 Day 5 Mean Variance 

set1  3×6 98.33 100.0 100.0 97.78 100.0 99.22 1.1 

set 2 3×6 96.67 100.0 100.0 100.0 99.00 99.13 1.4 

set 3 3×6 95.00 98.89 97.78 98.89 98.89 97.89 1.69 

Mean 96.67 99.63 99.26 98.89 99.30 98.75 1.19 

 
TABLE IV 

AVERAGE DETECTION ACCURACIES OF THE TWO-HAND MOVEMENTS ON DIFFERENT DAYS, USING A MLP NETWORK WITH TWO HIDDEN LAYERS EACH 

CONTAINING 10 HYPERBOLIC TANGENT UNITS AND FIVE LINEAR OUTPUT NODES AFTER 5000 TRAINING EPOCHS 

Feature Vectors No. of Input Nodes Day 1 Day 2 Day 3 Day 4 Day 5 Mean Variance 

Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα  3×3 98.00 96.00 98.33 97.67 92.00 96.40 2.62 

MAV, Var 2×3 77.67 69.67 69.67 50.33 56.33 64.73 11.12 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα 5×3 96.00 93.67 97.00 93.00 92.33 94.40 2.01 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα, SV 6×3 94.67 93.67 98.33 96.67 91.67 95.00 2.59 

MAV, Var, Pαααα/PT, SV 4×3 84.33 84.00 80.33 83.00 69.33 80.20 6.28 

MAV, Var, Pββββ/PT, SV 4×3 89.67 85.67 84.67 95.00 68.00 84.60 10.13 

SV 1×3 66.00 53.67 41.00 40.67 33.33 46.93 12.93 

 
TABLE V 

AVERAGE DETECTION ACCURACIES OF THE TWO-HAND MOVEMENTS ON DIFFERENT DAYS, USING AN RBF NETWORK WITH 25 HIDDEN NEURONS AND FIVE 

OUTPUT NODES AFTER 5000 TRAINING EPOCHS 

Feature Vectors No. of Input Nodes Day 1 Day 2 Day 3 Day 4 Day 5 Mean Variance 

Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα  3×3 86.33 71.67 87.67 91.67 75.67 82.60 8.51 

MAV, Var 2×3 64.33 47.33 34.00 22.67 31.00 39.87 16.30 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα 5×3 93.67 88.00 96.33 95.00 90.67 92.73 3.38 

MAV, Var, Pαααα/PT, Pββββ/PT, Pββββ/ Pαααα, SV 6×3 95.00 96.67 97.33 94.67 94.67 95.67 1.25 

MAV, Var, Pαααα/PT, SV 4×3 85.67 83.33 77.33 59.00 52.67 71.60 14.88 

MAV, Var, Pββββ/PT, SV 4×3 87.00 83.67 82.00 72.33 59.67 76.93 11.09 

SV 1×3 49.67 46.00 25.67 20.00 33.00 34.87 12.77 
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